Development of the Visualization and Simulation Models in Material Technology and Failures Related Courses

¹M.L. Sham, ¹J.K. Kim, ¹T.Y. Zhang ²R.C.L. Lai & ²K.K.Y. Lee ¹Department of Mechanical Eng ²Center for Enhanced Learning and Teaching

The Hong Kong University of Science & Technology

Contents

- Introduction
- Topics Covered in This Work
- Interface of the Animation Framework
- Development of the Animation
- Development of the Experimental Demonstration
- Summary

Introduction

- Advantages of visualization
 - Better understandings on the topic
 - Making the teaching materials easier and more interesting
 - Improving students' learning capabilities and attitude towards the course

Visual Tools in Teaching

Steel

Picture

tion of

AFCOR SPLtm -

ANODE, using a

ditch witch

Schematic Diagram

Video

- Multi-media use of more than one medium
- Traditional means: Figures,
 Pictures or Video
 - Video and animation ~ most efficient means to demonstrate the actual phenomenon to the students

Objectives

- To develop animations and experimental demonstrations to enhance the students' understandings
- Compatibility to the web components

Topics

Two courses

- MECH 242 Engineering Materials
- MECH 301 Material Failure in Mechanical Applications

7 computer animations

• Tetrahedral atomic position and octahedral atomic position in ceramic material

oughening Mechanism in Ce

Toughening Mechanism in Ceramic Materials

OzO

atique Crack Growth with Plastic Def

- Crazing in polymers
- Deformation in semicrystalline polymers
- Transformation toughening mechanism in ceramic materials
- Crevice corrosion in metal
- Crack tip propagation under cyclic loading
- Strengthening polymeric material by pre-tensioning

Topics

• 4 Experimental Demonstrations

- Strengthening polymeric material by pretensioning
- Creep and Relaxation of polymers
- Fracture behavior under the plane stress & plane strain conditions
- Fatigue life experiment under various stress amplitudes on aluminum

Interface of the Animation Framework

- Operated under MS Windows
- Advantages
 - Allowing students to choose the contents forward or backward
 - Sequentially present the content materials to students

Development of the Animation

- 3 stages
 - Contents organization and conceptual design
 - Storyboard development
 - Fabrication of the computer animation
 - Advantages in using Macromedia Flash
 - Small file size
 - Easy to be incorporated in the webpage

Development of the Experimental Demonstration

- 3 stages
 - Contents organization and conceptual design
 - Storyboard development
 - Fabrication of the video
- Digitalized for internet accessing

Examples

T

Example 1 Corrosion Form – Crevice Corrosion

Metal	1.1.1.1.1
	Crevice
	t Water

 $2H^+ + 2e^- \rightarrow H_2$

Stage 1The oxygen content in the water occupying a crevice is equal to the level of soluble oxygen and is the same everywhere Stage 2 Because of the difficult access caused by the crevice geometry, oxygen consumed by normal uniform corrosion is very soon depleted in the crevice

Crevice Corrosion – Flash Animation

http://ctz106.ust.hk/test/mech242/06_Crevice06.swf - Microsoft Internet Explorer	
	tice
antu (D) 🕘 http://wz106.ust.hk/test/mech242/06_Crevice06.swf : 連結 副 Vabool 副 Google 副 Vabool distingury 副 Vabool 開稿 副 Vabool 新聞 副 AlbeVieth Babal Eich Translation Service 副 Martinel Distingury 圖 Marriern Wabeter Ord	
Department of Mechanical Engineering	
Crevice Corrosion Mechanisms in Metals	
	E E
objective	
UDjective	
In this animation, you can understand the mechanisms of	Σ
crevice corrosion.	
	0
	<u> </u>
Click the 'Play' button to start	1
	3
Copyright 2004 The Hong Kong University of Science and Technology	
 2) 完成 2) 網際網路 	é
🔰 開始 🔄 🥝 🖉 😒 🎾 🖾 🦈 🔤 Sham. et 🧐 收件匣 🦉 Jase Pain 🦉 http://etz 📴 2 Mier 🔹 EN 🔳 🖬 🕏 😓 💆	🧏 🍓 🤻 13:58

Example 2 Crystal Structures from the Close Packing of Anions

- Tetrahedral Position: Four atoms surrounding one site
- Octahedral Position: Six atoms surrounding one site

Crystal Structures from the Close Packing of Anions

Two tetrahedral sites per anion
→1/4 x 4 x 2 = 2

Crystal Structures from the Close Packing of Anions

One octahedral site per anion
→1/6 x 3 x 2 = 1

Crystal Structures from the Close Packing of Anions – Flash Animation

IQ //TEXTOO UST.IM/IES/IMECIAS/207 _ETRINETIAD/S.SYT - MICLOSOFT INCLUSE EXPLORE	ا_
案(F) 編輯(E) 核視(V) 我的最愛(A) 工具(T) 説明(H)	
▶ 上一頁 ▼ 🕑 ▼ 🖄 💋 🎾 搜尋 ☆ 救的最愛 🔮 媒體 🚱 🖾 😓 🥌 🔛 🎽 🍪 ケァ 籠 🥽 🥸	
E(D) 🧃 http://ctz106.ust.hk/test/mech242/07_tetrahedral03.swf	✓ →
# 21 Yahoo! 21 Google 🕘 Yahoo dictionary 21 Yahoo! 財經 🔊 Yahoo! 新聞 🔊 AltaVista's Babel Fish Translation Service 21 Medical Dictionary 21 Merriam-Webster Onl	Line
Department of Mechanical Engineering	
retraneural and Octaneural Atomic Position in Cerainic Material	
Objective	
To this prinction, you can identify the publichle sites	
and locations for the cations residing in the close-	
packed 3-dimensions anion planes and explain how a single anion can provide one octahedral and two	
tetrahedral positons.	
Click the 'Play' button to start	
	11/
Copyright 2004 The Hong Kong University of Science and Technology	<i>b</i>
	÷

Remarks

- The goals of this work are
 - To enhance the students' participation
 - To enhance students' understandings
- Approach
 - To prepare this series of computer animations and experimental demonstrations available on the internet

Acknowledgements

University Grants Committee

Wanze Li, Tak Ha, Charlotte Chow of CELT in assisting the application of this project

• Leo Lee of Advanced Engineering Materials Facilities and C.W. Kwok of Department of Mechanical Engineering in supporting the experimental demonstration

Thank you

1

