# Enhanced Student Learning in Engineering Courses with CAS Technology

#### Hu, Thomas W. C.

thomashu@ust.hk Department of Civil Engineering, The Hong Kong University of Science and Technology

Engineering subjects: advanced mathematics Burden on both teachers and students Traditionally: manual calculations computational challenge learning difficulties Primary concern should be proper formulation and physical interpretation Mathematical drills: peripheral issues, yet • manual labor  $\rightarrow$  disproportionately large amounts of lecture/ study time

## Computer Algebra Systems (CAS)

More efficient teaching and learning process Problems more accessible and fun Examples (efficient use of CAS in solving engineering problems): surveying, mechanics of materials, statics

#### Least Squares Adjustment (Linear)



|      | Observed   | Plan     |
|------|------------|----------|
|      | Elevation  | distance |
|      | Difference | L        |
| Line | (m)        | (m)      |
| 1    | 5.101      | 45       |
| 2    | 2.342      | 30       |
| 3    | -1.253     | 35       |
| 4    | -6.134     | 30       |
| 5    | -0.685     | 25       |
| 6    | -3.006     | 20       |
| 7    | 1.707      | 20       |

A Leveling Network

|     | 1  | 0  | 0  |     |     | 5.101   |   | - 200   |
|-----|----|----|----|-----|-----|---------|---|---------|
|     | -1 | 0  | 0  | and |     | 2.342   |   | 207.5   |
|     | 0  | 0  | 1  |     |     | -1.253  |   | - 207.5 |
| A = | 0  | 0  | -1 |     | k = | - 6.134 | _ | 200     |
|     | -1 | 1  | 0  |     |     | - 0.685 |   | 0       |
|     | 0  | 1  | 0  |     |     | - 3.006 |   | - 207.5 |
|     | 0  | -1 | 1  |     |     | 1.707   |   | 0       |

W = diagonal weight matrix

 $\boldsymbol{X} = (\boldsymbol{A}^{T}\boldsymbol{W}\boldsymbol{A})^{-1} \boldsymbol{A}^{T}\boldsymbol{W}\boldsymbol{k}$ 

| M                                             | AIN          |              | RAD    | ) AUTO           |                | FUNC         | · · · · · · · · · · · ·  | 1/30 | MAIN                    | RAD AUTO                  | FUN          | C              | 2/30 |
|-----------------------------------------------|--------------|--------------|--------|------------------|----------------|--------------|--------------------------|------|-------------------------|---------------------------|--------------|----------------|------|
| 1:0.0.11.0.0.1]→transa transa <sup>T</sup> →a |              |              |        |                  |                |              |                          |      |                         |                           |              |                |      |
|                                               |              | L0           | Θ      | 1                | -1             | Θ            | 0                        | 1    |                         |                           | -1           | 1              | 0    |
|                                               |              | 0            | Θ      | 0                | 0              | 1            | 1                        | -1   | ∎ transa '              | ÷a                        | 0            | Θ              | -1   |
|                                               |              | ٢ĭ           | -1     | 0                | οŬ             | -1           | Ô                        | ן ס  | т                       |                           | 0            | Θ              | 1    |
|                                               | l.           | 0            | 1      | -1               | •              | A            | 1                        |      |                         |                           | -1           | Θ              | Θ    |
|                                               | n            | Ω            | Ω      | Ω                | 1              | 1            | - 1                      |      |                         |                           | 1            | 0              | 0    |
| T                                             | 1+<br>•015 f | F2+<br>19ebi | ra Cal | e  F4.<br>c Othe | r F!<br>:r Pr9 | 5<br>m10 014 | F6 <del>-</del><br>2an U | P -  | F1+ F2+<br>ToolsAl9ebra | F3+  F4+<br>Ca1c Other Pr | F5<br>9m10 ( | F6+<br>Ilean I | ШР   |

| F1- F2-<br>Tools#19eb | F3+ F4+<br>raCalcOther | F5<br>Pr9mI0C1e | an Up |        | 1- F2-<br>01s A19eb | ra Ca1c Ot | '4+ F5<br>her Pr9m | F6+<br>10 C1ean U | P -   |
|-----------------------|------------------------|-----------------|-------|--------|---------------------|------------|--------------------|-------------------|-------|
|                       |                        | [205            | .101  |        | 1745                | 0          | 0                  | 0                 | 6     |
|                       |                        | -20             | 5.158 |        | Ο                   | 1/30       | Θ                  | Θ                 | e     |
| -                     |                        | 206             | .247  |        | o                   | Θ          | 1/35               | Θ                 | e,    |
| ■ k <sup>T</sup> → k  | :                      | -20             | 6.134 |        | o                   | Θ          | Θ                  | 1/30              | e     |
|                       |                        | e               | .85   |        | o                   | Θ          | Θ                  | Θ                 | 1     |
| k⊺≯k                  |                        |                 |       | <br>m' | ^-1→w               |            |                    |                   |       |
| MAIN                  | RAD AUTO               | FUNC            | 8/30  | <br>M  | IN                  | RAD AU     | TO F               | UNC               | 14/30 |

F1+ F2+ F3+ F4+ F5 F6+ ToolsAlgebraCalcOtherPr9mIOClean UP

#### **Numerical Computation: Beams**

Sending moment (singularity functions used):  $M(x) = [-2x^2 - 48H(x - 12) + (x - 4)(2x + 13)H(x - 4)]/4$ 

Define h(x)=when(x<0,0,when(x=0,undef,1))</p>



### Symbolic Computation: Castigliano's Theorem



→ Solve for reactions, then V(x) & M(x) → Integrate M(x)<sup>2</sup>/2EI over the whole beam, differentiate w.r.t. load at point of interest for deflection

with permission © Prof Thomas Hu

(\* Homework 9.5-18 (hinged heam) solved using Castigliamo's theorem +)  
Hemove(\*Global \*\*] (\* Clear variables +)  
eq1 = ra + fk + rd - p + 0 (\* forces sum to zero +)  
eq2 = -tk + 2 + b - rd + 4 + b + 5 + b + 0 (\* mut ((w = +) about & is zero +)  
eq3 = ra + 3 + b + b + b + 0 (\* first eqn from FBD of heam &C: sum of zoments about C = 0 +)  
reaction - Solve[(eq1, eq2, eq3), (ra, tb, rd)][[1]] (\* solve for reactions and renove ( ) +)  
w = -(rd /. reaction) + DiracDelta[x = 2 + b] - (rd /. reaction) + DiracDelta[x = 4 + b]  
(\* Loading as 2 point loads: tb and rd, but be careful they are both MEGATIVE as upward forces !!! +)  
w = -(rd /. reaction) - Integrate[w, (x, 6, X)] (\* Shear V = RA + integral of -w +)  
w = FullSimplify(r, b > 0] (\* et rid of obvious zero step functions by telling iftka that b > 0 +)  
n = FullSimplify(r, b > 0], (pt rid of obvious zero step functions by telling iftka that b > 0 +)  
n = FullSimplify(r, b > 0], (pt rid of obvious zero step functions by telling iftka that b > 0 +)  
n = FullSimplify(r, b, b > 0], (pt rid of obvious zero step functions by telling iftka that b > 0 +)  
n = FullSimplify(r, b > 0], p] (\* take partial of (simplified) U partial P for deflection at application of P  
-p + ta + tb + td == 0  
Solve for reactions R<sub>A</sub>, R<sub>B</sub>, R<sub>D</sub>  
{ra + 
$$\frac{p}{2}$$
, tb +  $\frac{3p}{2}$ , rd + 2p}  
 $\frac{3}{2}$  pliracDelta[2b - x] - 2pliracDelta[4b - x]  
 $\frac{1}{2}$  ((-4p UnitStep[-4b] + 3p UnitStep[-2b]) +  $\frac{1}{2}$  (4p UnitStep[-4b + X] - 3p UnitStep[-2b + X])  
 $\frac{1}{2}$  p (x + 4 (-4b + x) UnitStep[-4b + x] + (6b - 3x) UnitStep[-2b + x])  
 $\frac{1}{2}$  p (x + 4 (-4b + x) UnitStep[-4b + x] + (6b - 3x) UnitStep[-2b + x])  
 $\frac{24e_1}{3e_1}$ 

# Symbolic Computation: Castigliano's Theorem with CAS calculator



CAS calculators: cannot integrate Dirac delta or step functions

Student project: programmed TI-89t CAS calculator to carry out such integration

Subject knowledge was further reinforced by having to program the tasks involved in the theory

## Conclusions

CAS technology in teaching and learning ~ machinery replacing physical labor in industry/ agriculture/ etc.

Significantly enhanced productivity

Min. mental labor on purely math. issues

Teach/ learn more realistic and challenging problems

Focus on the physics rather than math
 CAS-assisted approach for other science & engineering courses with heavy mathematics